- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Watson, Liam (5)
-
Hanselman, Jonathan (3)
-
Rasmussen, Jacob (2)
-
Hedden, Matthew (1)
-
Kotelskiy, Artem (1)
-
Lidman, Tye (1)
-
Moore, Allison_H (1)
-
Rasmussen, Sarah Dean (1)
-
Zibrowius, Claudius (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly invertible knots. Our proof combines a recent result of Hanselman with the Khovanov multicurve invariants$${\widetilde{{{\,\textrm{Kh}\,}}}}$$ and$${\widetilde{{{\,\textrm{BN}\,}}}}$$ . We apply the same techniques to reprove a result of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we show that$${\widetilde{{{\,\textrm{Kh}\,}}}}$$ and$${\widetilde{{{\,\textrm{BN}\,}}}}$$ detect if a Conway tangle is split.more » « less
-
Hanselman, Jonathan; Watson, Liam (, Geometry & Topology)
-
Hanselman, Jonathan; Rasmussen, Jacob; Watson, Liam (, Proceedings of the London Mathematical Society)
-
Hanselman, Jonathan; Rasmussen, Jacob; Rasmussen, Sarah Dean; Watson, Liam (, Compositio Mathematica)null (Ed.)If $$Y$$ is a closed orientable graph manifold, we show that $$Y$$ admits a coorientable taut foliation if and only if $$Y$$ is not an L-space. Combined with previous work of Boyer and Clay, this implies that $$Y$$ is an L-space if and only if $$\unicode[STIX]{x1D70B}_{1}(Y)$$ is not left-orderable.more » « less
-
Hedden, Matthew; Watson, Liam (, Selecta Mathematica)null (Ed.)
An official website of the United States government
